Big Data на практике: кейс компании "Рив Гош"

Игорь Бахарев
Сеть "Рив Гош" внедрила обучаемую систему предсказания поведения покупателей товаров. Система использует технологию машинного обучения и позволяет поднять точность персональных товарных рекомендаций по конкретным артикулам.

Тестовые запуски системы показали повышение точности примерно на 33%. Кроме этого, как говорят в компании "Инфосистемы Джет" (разработчики системы), ретейлер получил возможность повысить лояльность клиентов, увеличить продажи и снизить издержки на маркетинговые акции за счет адресной работы с потенциальными покупателями.

Что делает система?

Во-первых она занимается выявлением из всех держателей карт лояльности (2,6 млн человек) тех, кто потенциально может совершить покупку в ближайшие 2 недели. Далее она делает прогноз из ТОП-2 покупок по каждому такому клиенту, определяя из десятков тысяч товарных наименований конкретные позиции до уровня артикула (SKU). Эти позиции и можно порекомендовать людям.

Предполагается, что такие данные помогают ретейлеру существенно повысить вероятность тех или иных продаж, своевременно предлагая скидки интересующему сегменту клиентов, а также снизить затраты на привлечение новых потенциальных покупателей. Интересно, что размер самой скидки в рамках допустимых значений система рассчитывает для каждого покупателя индивидуально.
"Мы на практике выясняем с помощью искусственного интеллекта и накопленных в программе лояльности данных личные предпочтения целевой аудитории, что дает возможность делать заказчику по-настоящему индивидуальные предложения для своих клиентов", - рассказывает директор по разработке и внедрению компании "Инфосистемы Джет" Владимир Молодых.

Как проходило тестирование?

Проект охватил более 220 торговых точек по всей России, а также интернет-магазин "Рив Гош". Полный цикл рабочего процесса с применением ML реализован всего за 1,5 месяца.
Разработчики решения рассказывают, что оно использует целый комплекс методов машинного обучения, в частности градиентный бустинг, random forest, коллаборативную фильтрацию и другие.
"На первом этапе проекта математическая модель обучалась на данных, консолидированных в CRM-системе, включающих информацию о транзакциях за 2017 год, товарных позициях, товарообороте и поставках, а также историю покупки и демографические данные держателей дисконтных карт. Анализируя скрытые закономерности, ML-система выделила целевой сегмент покупателей и предсказала вероятные позиции в их чеках. Следующим этапом была произведена контрольная рассылка по требуемой категории клиентов, а затем - анализ фактических результатов (покупок)", - говорят разработчики.

Результаты тестовых испытаний

После персональных рекомендаций клиенты значительно чаще приходили за покупками. Повторные обращения в "Рив Гош" составили около 47%. При этом в среднем по клиентской базе этот показатель равен 22%. Кроме того, средний чек в этом случае оказался на 42% больше, чем у остальных покупателей.

Таким образом, удалось вычленить "золотой сегмент" держателей карт лояльности. За выбранный промежуток времени они принесли компании порядка 7% дохода, составляя всего 1% от общей клиентской базы. Что важно: состав, численность и параметры этого сегмента меняются динамически, и система учитывает это в режиме реального времени.
"В сжатые сроки мы получили инструмент, который позволил заметно повысить эффективность таргетированных коммуникаций с покупателями. От этого выигрывает и компания, повышая уровень продаж, и клиенты, которые вовремя получают интересующие их предложения", - рассказывает директор по маркетингу компании "Рив Гош" Дмитрий Подолинский.
В ближайших планах компании - построение отдельного Data Lake для проведения более глубокой аналитики данных, а также совершенствование системы лояльности. Также "Рив Гош" рассматривает возможность добавить неиспользуемые ранее показатели (информацию о складах, рейтинги товаров и пр.) для расширения выборки и круга решаемых задач.
Материал по теме

Почему Big Data - один из важнейших инструментов в eСommerce

Материал по теме

Зачем Big Data нужна ритейлу

Материал по теме

Магазины смогут использовать любые пользовательские данные из интернета?

Подписаться на новости

Актуальное сейчас

Технический апгрейд вместо «косметики»: рост трафика в Google на 25% при падающем спросе

Что делать, когда заказчик приходит с запросом на редизайн, а вы обнаруживаете, что его сайт заражен вредоносными скриптами и теряет клиентов? Сначала вылечить, потом украшать. SEO-оптимизатор digital-агентс...

58% покупают лекарства в интернете: аналитика

Аналитическая компания MAR CONSULT провела исследование про покупки лекарств в онлайн-аптеках: восприятие, выявление предпочтений пользователей, их проблемы и ожидания. Ключевые тенденции и факторы, влияющие...

"Жалоба вне зачёта": как маркетплейсы и покупатели по-разному видят одни и те же проблемы

Маркетплейсы утверждают, что проблемы при онлайн-покупках возникают у считанных процентов клиентов, однако исследования показывают обратное: большинство россиян хотя бы раз сталкивались с трудностями - от не...

Ozon fresh заинтересовался офлайном на фоне тренда мультиканальности

Сервис доставки продуктов Ozon fresh планирует протестировать формат офлайн-магазинов. Представитель Ozon говорит, что компания рассматривает возможность открытия небольших торговых точек рядом с уже работа...

Российский ритейл готовится к росту прибыли от генеративного ИИ

Внедрение генеративного искусственного интеллекта к 2030 году может принести российскому ритейлу и eСommerce до 160 млрд руб. дополнительной прибыли в год. Производители потребительских товаров могут получи...

Владельцы ПВЗ в России зарабатывают в среднем 900 тыс руб в год

Аналитики Центра доказательной экспертизы Института Гайдара представили результаты опроса владельцев пунктов выдачи заказов и продавцов маркетплейсов. Годовая выручка 42% владельцев ПВЗ в 2024 г не д...

Согласие на обработку персональных данных

×

Физическое лицо, оставляя заявку на веб-сайте e-pepper.ru через форму подписки на e-mail рассылку, действуя свободно, своей волей и в своем интересе, а также подтверждая свою дееспособность, предоставляет свое согласие на обработку персональных данных (далее — Согласие) Обществу с ограниченной ответственностью «МАКС ТЕХНОЛОДЖИ» (ООО «МАКС ТЕХНОЛОДЖИ») (ИНН 7701370771), которому принадлежит веб-сайт e-pepper.ru и которое зарегистрировано по адресу 115114, Москва, 1-й Павелецкий проезд, 1/42к2, помещение 1а/2п, офис 4, на обработку своих персональных данных со следующими условиями:

  1. Данное Согласие дается на обработку персональных данных, как без использования средств автоматизации, так и с их использованием.
  2. Согласие дается на обработку следующих моих персональных данных: персональные данные, не относящиеся к специальной категории персональных данных или к биометрическим персональным данным: адрес электронной почты (e-mail); имя; сведения о месте работы; номер мобильного телефона.
  3. Цель обработки персональных данных: обсуждение возможного проекта.
  4. В ходе обработки с персональными данными будут совершены следующие действия: сбор; запись; систематизация; накопление; хранение; уточнение (обновление, изменение); извлечение; использование; передача (предоставление, доступ); блокирование; удаление; уничтожение.
  5. Персональные данные обрабатываются в течение 30 дней с момента отказа в дальнейшем обсуждении проекта или с момента принятия решения о заключении договора на проект в соответствии с ч. 4 ст. 21 152-ФЗ, смотря что произойдет раньше.
  6. Согласие может быть отозвано вами или вашим представителем путем направления ООО «МАКС ТЕХНОЛОДЖИ» письменного заявления, по адресу 115114, Москва, 1-й Павелецкий проезд, 1/42к2, помещение 1а/2п, офис 4.
  7. В случае отзыва вами или вашим представителем Согласия ООО «МАКС ТЕХНОЛОДЖИ» вправе продолжить обработку персональных данных без него при наличии оснований, указанных в пунктах 2 — 11 части 1 статьи 6, части 2 статьи 10 и части 2 статьи 11 Федерального закона № 152-ФЗ «О персональных данных» от 27.07.2006 г.
  8. Настоящее согласие действует все время до момента прекращения обработки персональных данных, указанных в п. 6 и п. 7 Согласия.